Chapter 3
MATRICES AND DETERMINANTS

Matrix
A rectangular array of numbers enclosed by a pair of brackets such as:
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i1s called a matrix. The horizontal lines of numbers are called rows and the vertical lines
of numbers are called columns.

Order of a Matrix

If a matrix has m rows and n columns then its order is m X n.

In above, matrix (i) has order 2 X 3 and matrix (ii) has order 4 x 3.
Addition of Matrices

Two matrices A and B can be added if A and B have same order.

The sum of A and B, A + B can be obtained by adding their corresponding elements.
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Subtraction of Matrices

For example if
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A matrix B can be subtracted from a matrix A if A and B have same order.
Subtraction of B from A, A — B can be obtained by subtracting each element of matrix B
from the corresponding element of matrix A.
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Scalar Multiplication

then
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It A is a matrix of order m X n and Kk is a scalar, then the product k and A, denoted
by KA, is the matrix formed by multiplying cach entry of A by k. and this process 1s called
scalar multiplication.
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Multiplication of Two Matrices

then

Two matrices A and B are said to be conformable for the product AB 1if
The number of columns of A = The number of rows of B.

Il A is amatrix ol order m xn and B is a matrix ol order n X p then we can [ind
AB = C (say) and order of matrix C will be m x p.

For example
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Transpose of A Matrix

If A is a matrix of order m X n then an n x m matrix obtained by interchanging the
. . . .. t
rows and columns of A, is called the transpose of A and it is denoted by A'.

l"A—[] 2} h At—[] 3}
For example if =13 4 then =112 4

Determinant of 2 x 2 Matrix

We can associate a unique number with every square matrix A over R or C, this
number is known as the determinant of A.

For eif A = [a b}
Or exampel = c d
then

a
= ad — bc

det A = |A| = b{
et A = [A]| = d
Singular and Non—singular Matrices

A matrix A is singularif |A| = 0

A matrix A is non—singular if |A] = 0

Adjoint of 2 X 2 Matrix

a b
The adjoint of the matrix A = [ 2 d] is denoted by adj A and is defined as
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Inverse of 2 X 2 Matrix

Let A be a non—singular square matrix of order 2. If there exists a matrix B such that
I 0
AB = BA b, where L = [ 0 IJ’ then B is called the multiplicative inverse of A and 1is

usually denoted by A'ie. B=A"
= AA'=A'A=D
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EXERCISE 3.1

2 3 1 7
Q1 If A=[1 5}and B=[6 4} then show that
(i) 4A-3A = A (i) 3B-3A =3(B-A)

Solution:
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(i) To show
4A -3A = A
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